Question 182787
<font face="Times New Roman" size="+2">


Area of first garden of width <i>x</i> and length <i>x</i> + 9:


*[tex \LARGE \text{          }\math  x(x + 9) = x^2 + 9x ]


Area of second garden of width <i>x</i> + 6 and length 2(<i>x</i> + 9):


*[tex \LARGE \text{          }\math  (x + 6)(2x + 18) = 2x^2 + 15x + 108]


The two areas sum to 528:


*[tex \LARGE \text{          }\math  (x^2 + 9x) + (2x^2 + 15x + 108) = 528]


Simplify:


*[tex \LARGE \text{          }\math  3x^2 + 39x - 420 = 0]


*[tex \LARGE \text{          }\math  x^2 + 13x - 140 = 0]


Solve for <i>x</i> and then use the expression above for the area of the first garden to calculate your answer.  Hint:  The quadratic factors, but one of the roots will be extraneous.


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>