Question 182512
{{{sqrt(147x^3 * y^6) }}} Start with the given expression



{{{sqrt(49*3*x^3 * y^6) }}} Factor 147 to get {{{49*3}}}



{{{sqrt(49*3*x^2*x* y^6) }}} Factor {{{x^3}}} to get {{{x^2*x}}}



{{{sqrt(49*3*x^2*x* y^2*y^2*y^2) }}} Factor {{{y^6}}} to get {{{y^2*y^2*y^2}}}



{{{sqrt(49)*sqrt(3)*sqrt(x^2)*sqrt(x)*sqrt(y^2)*sqrt(y^2)*sqrt(y^2) }}} Break up the square root.



{{{7*sqrt(3)*sqrt(x^2)*sqrt(x)*sqrt(y^2)*sqrt(y^2)*sqrt(y^2) }}} Take the square root of {{{49}}} to get {{{7}}}



{{{7*sqrt(3)*x*sqrt(x)*sqrt(y^2)*sqrt(y^2)*sqrt(y^2) }}} Take the square root of {{{x^2}}} to get {{{x}}}



{{{7*sqrt(3)*x*sqrt(x)*y*y*y }}} Take the square root of {{{y^2}}} to get {{{y}}}



{{{7xy^2*sqrt(3x)}}} Rearrange the terms and multiply



So {{{sqrt(147x^3 * y^6) }}} simplifies to {{{7xy^2*sqrt(3x)}}}