Question 182424


{{{(3x+4)^2}}} Start with the given expression.



{{{(3x+4)(3x+4)}}} Expand. Remember something like {{{x^2=xx}}}.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3x)+4)(highlight(3x)+4)}}} Multiply the <font color="red">F</font>irst terms:{{{(3x)(3x)=9x^2}}}.



{{{(highlight(3x)+4)(3x+highlight(4))}}} Multiply the <font color="red">O</font>uter terms:{{{(3x)(4)=12x}}}.



{{{(3x+highlight(4))(highlight(3x)+4)}}} Multiply the <font color="red">I</font>nner terms:{{{(4)(3x)=12x}}}.



{{{(3x+highlight(4))(3x+highlight(4))}}} Multiply the <font color="red">L</font>ast terms:{{{(4)(4)=16}}}.



---------------------------------------------------

So we have the terms: {{{9x^2}}}, {{{12x}}}, {{{12x}}}, and {{{16}}} 



{{{9x^2+12x+12x+16}}} Now collect every term listed above to make a single expression.



{{{9x^2+24x+16}}} Now combine like terms.



So {{{(3x+4)^2}}} FOILs to {{{9x^2+24x+16}}}.



In other words, {{{(3x+4)^2=9x^2+24x+16}}}.