Question 182202
Solve for z:
{{{abs(3z)+7 = 10}}} First, subtract 7 from both sides of the equation to isolate the absolute value.
{{{abs(3z) = 3}}} Now remove the absolute-value bars abd write the two resulting equations:
{{{3z = 3}}} or {{{3z = -3}}} Now divide both sides by 3 in these two equations:
{{{z = 1}}} or {{{z = -1}}}
Check:
{{{abs(3z)+7 = 10}}} First substitute z = 1.
{{{abs(3*1)+7 = 10}}} Evaluate the left side.
{{{3+7 = 10}}}
{{{10 = 10}}} OK!
{{{abs(3z)+7 = 10}}} Substitute z = -1.
{{{abs(3(-1))+7 = 10}}}
{{{abs(-3)+7 = 10}}} Evaluate the left side.
{{{3+7 = 10}}}
{{{10 = 10}}} OK!