Question 182041
Do you want to factor this? Please post full instructions




Looking at the expression {{{4w^2+19w-5}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{19}}}, and the last term is {{{-5}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{-5}}} to get {{{(4)(-5)=-20}}}.



Now the question is: what two whole numbers multiply to {{{-20}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{19}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-20}}} (the previous product).



Factors of {{{-20}}}:

1,2,4,5,10,20

-1,-2,-4,-5,-10,-20



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-20}}}.

1*(-20)
2*(-10)
4*(-5)
(-1)*(20)
(-2)*(10)
(-4)*(5)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{19}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>1+(-20)=-19</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>2+(-10)=-8</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>4+(-5)=-1</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>20</font></td><td  align="center"><font color=red>-1+20=19</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-2+10=8</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-4+5=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{20}}} add to {{{19}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{20}}} both multiply to {{{-20}}} <font size=4><b>and</b></font> add to {{{19}}}



Now replace the middle term {{{19w}}} with {{{-w+20w}}}. Remember, {{{-1}}} and {{{20}}} add to {{{19}}}. So this shows us that {{{-w+20w=19w}}}.



{{{4w^2+highlight(-w+20w)-5}}} Replace the second term {{{19w}}} with {{{-w+20w}}}.



{{{(4w^2-w)+(20w-5)}}} Group the terms into two pairs.



{{{w(4w-1)+(20w-5)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(4w-1)+5(4w-1)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w+5)(4w-1)}}} Combine like terms. Or factor out the common term {{{4w-1}}}


---------------------------------------------



Answer:



So {{{4w^2+19w-5}}} factors to {{{(w+5)(4w-1)}}}.



Note: you can check the answer by FOILing {{{(w+5)(4w-1)}}} to get {{{4w^2+19w-5}}} or by graphing the original expression and the answer (the two graphs should be identical).