Question 181956


Looking at the expression {{{a^2-2a-35}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-2}}}, and the last term is {{{-35}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-35}}} to get {{{(1)(-35)=-35}}}.



Now the question is: what two whole numbers multiply to {{{-35}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-35}}} (the previous product).



Factors of {{{-35}}}:

1,5,7,35

-1,-5,-7,-35



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-35}}}.

1*(-35)
5*(-7)
(-1)*(35)
(-5)*(7)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>1+(-35)=-34</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>5+(-7)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>-1+35=34</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-5+7=2</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{-7}}} add to {{{-2}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{-7}}} both multiply to {{{-35}}} <font size=4><b>and</b></font> add to {{{-2}}}



Now replace the middle term {{{-2a}}} with {{{5a-7a}}}. Remember, {{{5}}} and {{{-7}}} add to {{{-2}}}. So this shows us that {{{5a-7a=-2a}}}.



{{{a^2+highlight(5a-7a)-35}}} Replace the second term {{{-2a}}} with {{{5a-7a}}}.



{{{(a^2+5a)+(-7a-35)}}} Group the terms into two pairs.



{{{a(a+5)+(-7a-35)}}} Factor out the GCF {{{a}}} from the first group.



{{{a(a+5)-7(a+5)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(a-7)(a+5)}}} Combine like terms. Or factor out the common term {{{a+5}}}


---------------------------------------------



Answer:



So {{{a^2-2a-35}}} factors to {{{(a-7)(a+5)}}}.



Note: you can check the answer by FOILing {{{(a-7)(a+5)}}} to get {{{a^2-2a-35}}} or by graphing the original expression and the answer (the two graphs should be identical).