Question 181838
{{{(4x^4-10x^3+8x^2)/(2x)}}} Start with the given expression



{{{(2x^2(2x^2-5x+4))/(2x)}}} Factor out the GCF {{{2x^2}}}



{{{(2x*x(2x^2-5x+4))/(2x)}}} Break down {{{2x^2}}} into {{{2x*x}}}



{{{(highlight(2x)*x(2x^2-5x+4))/highlight(2x)}}} Highlight the common terms.



{{{(cross(2x)*x(2x^2-5x+4))/cross(2x)}}} Cancel out the common terms.



{{{x(2x^2-5x+4)}}} Simplify (by removing the canceled terms)



{{{2x^3-5x^2+4x}}} Distribute



==================================


Answer:


So {{{(4x^4-10x^3+8x^2)/(2x)}}} simplifies to {{{2x^3-5x^2+4x}}}



In other words, {{{(4x^4-10x^3+8x^2)/(2x)=2x^3-5x^2+4x}}} where {{{x<>0}}}