Question 181788
Find the greatest common factor
X y, x⁴ y³, x⁴ y⁴, -x y
{{{x^5y^5, x^4y^3, x^4y^4, -xy}}}
It's xy, due to the last term.
-------------------------
Factor
60m⁹ + 72m⁷ -24m³
{{{60m^9 + 72m^7 - 24m^3}}}
={{{12m^3*(5m^6 + 6m^4 - 2)}}}
----------------------
u² -2uv – 63v² 
{{{u^2 - 2uv - 63v^2}}}
=(u - 9v*(u + 7v)
-------------------------
Factor by group
2x³ -4x² -3x +6
{{{2x^3 - 4x^2 - 3x + 6}}}
={{{(x-2)*(2x^2 - 3)}}}
I don't know what "grouping" is.
----------------------
Factor completely
4x² -28x +40
{{{4x^2 - 28x + 40}}}
={{{4(x^2 - 7x + 10)}}}
= 4(x-5)(x-2)
--------------------
y² +.02y - .015 Is the polynomial prime?
{{{y^2 - 0.02y - 0.015}}}
It cannot be factored using integers. Does that make it prime?
If you multiply by 1000 to make all the coefficients integers, it's still not factorable using integers, but it can be factored using irrational numbers.
--------------------
If we look at the one above, 4(x-5)*(x-2), and divide it by 8, we get:
0.5x^2 -3.5x + 5.  Is that prime?  It's = (x-5)*(0.5x - 1).