Question 180716
{{{(2x-1)(2x^2-3x+2)}}} Start with the given expression.



{{{2x(2x^2-3x+2)-1(2x^2-3x+2)}}} Expand. Note: {{{(a+b)(c+d+e)=a(c+d+e)+b(c+d+e)}}}



{{{(2x)*(2x^2)+(2x)*(-3x)+(2x)*(2)+(-1)*(2x^2)+(-1)*(-3x)+(-1)*(2)}}} Distribute.



{{{4*x^3-6*x^2+4*x-2*x^2+3*x-2}}} Multiply.



{{{4*x^3-8*x^2+7*x-2}}} Now combine like terms.



 So {{{(2x-1)(2x^2-3x+2)}}} expands to {{{4*x^3-8*x^2+7*x-2}}}.



In other words, {{{(2x-1)(2x^2-3x+2)=4*x^3-8*x^2+7*x-2}}}.