Question 179519
Switch both to slope-intercept form {{{y=mx+b}}} and graph.
1.{{{x-y=-4}}}
1.{{{y=x+4}}}
Slope = 1, Y-intercept=(0,4)
Another point on the line: (-4,0)
.
.
.
2.{{{2y+x=5}}}
2.{{{2y=-x+5}}}
2.{{{y= -(x/2)+5/2}}}
Slope= -1/2, Y-intercept=(0,5/2)
Another point on the line (5,0)
.
.
.
Grpah the points and connect the lines. 
Look for the intersection point of the two lines. 
{{{drawing( 300, 300, -6, 6, -6, 6,grid( 1 ),circle( 0, 4, .2 ),
circle(-1,3,0.10),
circle(-1,3,0.15),
circle(-1,3,0.20),
circle(-4,0,.2),
circle(0,2.5,.2),
circle(5,0,.2),graph( 300, 300, -6, 6, -6, 6, x+4, -(x/2)+5/2)) }}}
Looks like the intersection occurs at (-1,3).
Check the solution in both equations.
1.{{{y=x+4}}}
{{{3=-1+4}}}
{{{-3=-3}}}
.
.
.
2.{{{y= -(x/2)+5/2}}}
{{{3= (1/2)+5/2}}}
{{{3=3}}}
The intersection point (1,3) leads to two true statements. 
It is a good solution.