Question 179600


Looking at the expression {{{w^2-3w-18}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-3}}}, and the last term is {{{-18}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-18}}} to get {{{(1)(-18)=-18}}}.



Now the question is: what two whole numbers multiply to {{{-18}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-18}}} (the previous product).



Factors of {{{-18}}}:

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-18}}}.

1*(-18)
2*(-9)
3*(-6)
(-1)*(18)
(-2)*(9)
(-3)*(6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>1+(-18)=-17</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>2+(-9)=-7</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>3+(-6)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-1+18=17</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-2+9=7</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-3+6=3</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-6}}} add to {{{-3}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-6}}} both multiply to {{{-18}}} <font size=4><b>and</b></font> add to {{{-3}}}



Now replace the middle term {{{-3w}}} with {{{3w-6w}}}. Remember, {{{3}}} and {{{-6}}} add to {{{-3}}}. So this shows us that {{{3w-6w=-3w}}}.



{{{w^2+highlight(3w-6w)-18}}} Replace the second term {{{-3w}}} with {{{3w-6w}}}.



{{{(w^2+3w)+(-6w-18)}}} Group the terms into two pairs.



{{{w(w+3)+(-6w-18)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(w+3)-6(w+3)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w-6)(w+3)}}} Combine like terms. Or factor out the common term {{{w+3}}}


---------------------------------------------



Answer:



So {{{w^2-3w-18}}} factors to {{{(w-6)(w+3)}}}.



Note: you can check the answer by FOILing {{{(w-6)(w+3)}}} to get {{{w^2-3w-18}}} or by graphing the original expression and the answer (the two graphs should be identical).