Question 179277
In a two digit number, twice the tens digit increased by the units digit is 22. If the digits are reversed, the new number is 45 less than the original
----------------------------
Let the number be 10t + u where t is the ten and u is the unit digit.
---------------------------
Equations:
2t+u = 22
10u + t = 10t + u - 45
--------------------------
Rearrange to get:

2t   +   u   = 22
9t   -  9u   = 45
----------------------
Simplify:
2t  + u  = 22
t   - u  = 5
----------------
Add to solve for t:
3t = 27
t = 9 (the tens digit)
-----
Since t-u = 5, 9 - u = 5 ; u = 4
==============
Original Number:
10t + u = 10*9 + 4 = 94
============================
Cheers,
Stan H.