Question 178227
</pre><font size=4><b>
Line Eqns:
{{{4x+4y= 6}}}, EQN 1
{{{ 3x-5y= 7 }}}, EQN 2
solve x, y 
In EQN 1, we get: {{{4y=6-4x}}} ---->{{{cross(4)y/cross(4)=(6-4x)/4=(6/4)-(4x/4)}}}---->{{{y=cross(6)3/cross(4)2-(cross(4)x/cross(4))}}}
{{{y=(3/2)-x}}}, EQN 3, subst. in EQN 2:
{{{3x-5((3/2)-x)=7}}}
{{{3x-(15/2)+5x=7}}}
{{{3x+5x=7+(15/2)}}}
{{{8x=(14+15)/2}}}----->{{{8x*2=29}}}----->{{{16x=29}}}
{{{cross(16)x/cross(16)=29/16}}}
{{{highlight(x=29/16)}}}, subts. in EQN 3:
{{{y=(3/2)-(29/16)}}}, Get LCD
{{{y=(24-29)/16=highlight(-5/16=y)}}}
We'll see the graph:
{{{drawing(400,400,-4,4,-4,4,grid(1),graph(400,400,-4,4,-4,4,(3/2)-x,(3/5)x-(7/5)),blue(circle(29/16,-5/16,.08)))}}}---->RED Line>>>> EQN 1; GREEN Line>>>> EQN 2, Intersect @ point (29/16,-5/16)
Thank you,
Jojo</pre>