Question 177251
# 34




{{{3x^2+6x-24}}} Start with the given expression



{{{3(x^2+2x-8)}}} Factor out the GCF {{{3}}}



Now let's focus on the inner expression {{{x^2+2x-8}}}





------------------------------------------------------------




Looking at {{{x^2+2x-8}}} we can see that the first term is {{{x^2}}} and the last term is {{{-8}}} where the coefficients are 1 and -8 respectively.


Now multiply the first coefficient 1 and the last coefficient -8 to get -8. Now what two numbers multiply to -8 and add to the  middle coefficient 2? Let's list all of the factors of -8:




Factors of -8:

1,2,4,8


-1,-2,-4,-8 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to -8

(1)*(-8)

(2)*(-4)

(-1)*(8)

(-2)*(4)


note: remember, the product of a negative and a positive number is a negative number



Now which of these pairs add to 2? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 2


<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td align="center">1</td><td align="center">-8</td><td>1+(-8)=-7</td></tr><tr><td align="center">2</td><td align="center">-4</td><td>2+(-4)=-2</td></tr><tr><td align="center">-1</td><td align="center">8</td><td>-1+8=7</td></tr><tr><td align="center">-2</td><td align="center">4</td><td>-2+4=2</td></tr></table>



From this list we can see that -2 and 4 add up to 2 and multiply to -8



Now looking at the expression {{{x^2+2x-8}}}, replace {{{2x}}} with {{{-2x+4x}}} (notice {{{-2x+4x}}} adds up to {{{2x}}}. So it is equivalent to {{{2x}}})


{{{x^2+highlight(-2x+4x)+-8}}}



Now let's factor {{{x^2-2x+4x-8}}} by grouping:



{{{(x^2-2x)+(4x-8)}}} Group like terms



{{{x(x-2)+4(x-2)}}} Factor out the GCF of {{{x}}} out of the first group. Factor out the GCF of {{{4}}} out of the second group



{{{(x+4)(x-2)}}} Since we have a common term of {{{x-2}}}, we can combine like terms


So {{{x^2-2x+4x-8}}} factors to {{{(x+4)(x-2)}}}



So this also means that {{{x^2+2x-8}}} factors to {{{(x+4)(x-2)}}} (since {{{x^2+2x-8}}} is equivalent to {{{x^2-2x+4x-8}}})




------------------------------------------------------------





So our expression goes from {{{3(x^2+2x-8)}}} and factors further to {{{3(x+4)(x-2)}}}



------------------

Answer:


So {{{3x^2+6x-24}}} factors to {{{3(x+4)(x-2)}}}

    



<hr>



# 35





Looking at the expression {{{4x^2+4x-15}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{4}}}, and the last term is {{{-15}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{-15}}} to get {{{(4)(-15)=-60}}}.



Now the question is: what two whole numbers multiply to {{{-60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-60}}} (the previous product).



Factors of {{{-60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-60}}}.

1*(-60)
2*(-30)
3*(-20)
4*(-15)
5*(-12)
6*(-10)
(-1)*(60)
(-2)*(30)
(-3)*(20)
(-4)*(15)
(-5)*(12)
(-6)*(10)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>1+(-60)=-59</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>2+(-30)=-28</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>3+(-20)=-17</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>4+(-15)=-11</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>5+(-12)=-7</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>6+(-10)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-1+60=59</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-2+30=28</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-3+20=17</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-4+15=11</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-5+12=7</font></td></tr><tr><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>-6+10=4</font></td></tr></table>



From the table, we can see that the two numbers {{{-6}}} and {{{10}}} add to {{{4}}} (the middle coefficient).



So the two numbers {{{-6}}} and {{{10}}} both multiply to {{{-60}}} <font size=4><b>and</b></font> add to {{{4}}}



Now replace the middle term {{{4x}}} with {{{-6x+10x}}}. Remember, {{{-6}}} and {{{10}}} add to {{{4}}}. So this shows us that {{{-6x+10x=4x}}}.



{{{4x^2+highlight(-6x+10x)-15}}} Replace the second term {{{4x}}} with {{{-6x+10x}}}.



{{{(4x^2-6x)+(10x-15)}}} Group the terms into two pairs.



{{{2x(2x-3)+(10x-15)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(2x-3)+5(2x-3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+5)(2x-3)}}} Combine like terms. Or factor out the common term {{{2x-3}}}


---------------------------------------------



Answer:



So {{{4x^2+4x-15}}} factors to {{{(2x+5)(2x-3)}}}.



Note: you can check the answer by FOILing {{{(2x+5)(2x-3)}}} to get {{{4x^2+4x-15}}} or by graphing the original expression and the answer (the two graphs should be identical).