Question 177045
{{{v(x)=x^3-13x^2+50x=56}}}
{{{x^3-13x^2+50x-56=0}}}
Let's graph the function to see what we get. 


{{{ graph( 300, 300, -2, 10, -10, 10, x^3-13x^2+50x-56) }}}
Looks like three possible answers, x=2,4,and 7.
Verify the solutions,
{{{v(x)=x^3-13x^2+50x}}}
{{{v(2)=2^3-13(2)^2+50(2)=8-52+100=56}}}
{{{v(4)=4^3-13(4)^2+50(4)=64-208+200=56}}}
{{{v(7)=7^3-13(7)^2+50(7)=343-637+350=56}}}
All three x's (2,4,7) solve for v=56.