Question 177006
Given f(x)=3x+1, u(x)=square root x, and h(x)=1/(x+1), find h(f(u(x)). 


First,
f(x)=3x+1, u(x)={{{sqrt(x)}}}, so to find f(u(x)) substitute the u(x) into the formula for f(x) like this:  f(u(x))= 3{{{sqrt(x)}}}+1. 


Next, h(f(u(x))), substitute f(u(x)) into the formula for h(x) like this:
{{{h(x) = 1/(x+1)}}}
{{{h(f(u(x))) = 1/((3*sqrt(x) + 1 ) +1)}}}
{{{h(f(u(x))) = 1/(3*sqrt(x) + 2)}}}

R^2