Question 176961


{{{(g-6h)(g-6h)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(g)-6h)(highlight(g)-6h)}}} Multiply the <font color="red">F</font>irst terms:{{{(g)*(g)=g^2}}}.



{{{(highlight(g)-6h)(g+highlight(-6h))}}} Multiply the <font color="red">O</font>uter terms:{{{(g)*(-6*h)=-6*g*h}}}.



{{{(g+highlight(-6h))(highlight(g)-6h)}}} Multiply the <font color="red">I</font>nner terms:{{{(-6*h)*(g)=-6*g*h}}}.



{{{(g+highlight(-6h))(g+highlight(-6h))}}} Multiply the <font color="red">L</font>ast terms:{{{(-6*h)*(-6*h)=36*h^2}}}.



---------------------------------------------------



{{{g^2-6*g*h-6*g*h+36*h^2}}} Now collect every term to make a single expression.



{{{g^2-12*g*h+36*h^2}}} Now combine like terms.



So {{{(g-6h)(g-6h)}}} FOILs to {{{g^2-12*g*h+36*h^2}}}.



In other words, {{{(g-6h)(g-6h)=g^2-12*g*h+36*h^2}}}.