Question 176957


{{{(7x+1)(x^2+1)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(7x)+1)(highlight(x^2)+1)}}} Multiply the <font color="red">F</font>irst terms:{{{(7*x)*(x^2)=7*x^3}}}.



{{{(highlight(7x)+1)(x^2+highlight(1))}}} Multiply the <font color="red">O</font>uter terms:{{{(7*x)*(1)=7*x}}}.



{{{(7x+highlight(1))(highlight(x^2)+1)}}} Multiply the <font color="red">I</font>nner terms:{{{(1)*(x^2)=x^2}}}.



{{{(7x+highlight(1))(x^2+highlight(1))}}} Multiply the <font color="red">L</font>ast terms:{{{(1)*(1)=1}}}.



---------------------------------------------------



{{{7*x^3+7*x+x^2+1}}} Now collect every term to make a single expression.



{{{7*x^3+x^2+7*x+1}}} Rearrange the terms in descending degree.



So {{{(7x+1)(x^2+1)}}} FOILs to {{{7*x^3+x^2+7*x+1}}}.



In other words, {{{(7x+1)(x^2+1)=7*x^3+x^2+7*x+1}}}.