Question 176902
{{{3x^2 - 5x - 11 = 0}}}
{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
{{{a = 3}}}
{{{b = -5}}}
{{{c = -11}}}
{{{x = (-(-5) +- sqrt( (-5)^2-4*3*(-11) ))/(2*3) }}}
{{{x = (5 +- sqrt( 25 + 132 ))/6 }}} 
{{{x = (5 +- sqrt( 157 ))/6 }}}
{{{x = (5 + sqrt(157))/6}}}
{{{x = (5 - sqrt(157))/6}}}
I'm confused by "x-intercept"
By definition, the x-intercept is where {{{y=0}}}
and that would be the 2 roots I just solved for
The y-intercept, however, would be where {{{x=0}}}
{{{y = 3x^2 - 5x - 11 }}}
{{{y = 3*0^2 - 5*0 - 11}}}
{{{y = -11}}} or the point (0,-11)
The plot:
{{{ graph( 500, 500, -10, 10, -15, 15, 3x^2 - 5x - 11) }}}