Question 176655
{{{-8q^2-2q+1=0}}}
{{{8q^2+2q-1=0}}}
Using the quadratic formula,
{{{q= (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
{{{q = (-2 +- sqrt( 2^2-4*8*(-1) ))/(2*8) }}}
{{{q = (-2 +- sqrt( 4+32))/(16) }}}
{{{q = (-2 +- sqrt( 36))/(16) }}}
{{{q = (-2 +- 6)/(16) }}}
First solution:
{{{q = (-2 + 6)/(16) }}}
{{{q = (4)/(16) }}}
{{{q=1/4}}}
Second solution:
{{{q = (-2 - 6)/(16) }}}
{{{q = (-8)/(16) }}}
{{{q = -1/2 }}}
.
.
.
You can factor this quadratic,
{{{(4q-1)(2q+1)=0}}}
First solution:
{{{4q-1=0}}}
{{{4q=1}}}
{{{q=1/4}}}
Second solution:
{{{2q+1=0}}}
{{{2q=-1}}}
{{{q=-1/2}}}
Here's a graph of the function to verify the zeros. 

{{{ graph( 300, 300, -3, 3, -3, 3, 8x^2+2x-1) }}}