Question 175803
13) Simplify SR(45x^23)
I looked at this earlier, didn't know what SR meant. I'm guessing it's square root.
SR(45x^23)
={{{sqrt(45x^23)}}}
={{{sqrt(9)*sqrt(x^22)*sqrt(5)*sqrt(x)}}}
= {{{3x^11*sqrt(5x)}}}
14) Simplify 4th root of (x^5 divided by 16y^15) 
{{{sqrt(sqrt(x^5/16y^15))}}}
={{{sqrt(sqrt(x^4/16y^12))*sqrt(sqrt(x/y^3))}}}
={{{x/2y^3*sqrt(sqrt(x/y^3))}}}
={{{x/2y^3*sqrt(sqrt(x/y)/y)}}}
----------------
15) Simplify (x1/4 y1/2)2(x2y3)1/2  I assume those are exponents.
{{{(x^(1/4)y^(1/2))^2*(x^2y^3)^(1/2)}}}
={{{(x^(1/2)y)*(xy^(3/2))}}}
={{{(x^(3/2)y^(5/2))}}}
={{{xy^2*sqrt(xy)}}}