Question 175852
</pre><font size=4><b>
Confirming to Slope-Intercept Form, {{{y=mx+b}}}
{{{x-2y=6}}}----->{{{2y=x-6}}}----->{{{cross(2)y/cross(2)=(x-6)/2}}}
{{{y=(1/2)x-(6/2)}}}
{{{y=(1/2)x-3}}}
We let f{{{highlight((y)=0)}}};
{{{0=(1/2)x-3}}}
{{{(1/2)x=3}}}, cross multiply
{{{highlight(x=6)}}}
.
f{{{highlight(y=1)}}};
{{{1=(1/2)x-3}}}
{{{1+3=(1/2)x}}}----->{{{4=(1/2)x}}}, cross multiply
{{{highlight(x=8)}}}
.
f{{{highlight(y=2)}}}
{{{2=(1/2)x-3}}}
{{{2+3=(1/2)x}}}----->{{{5=(1/2)x}}}, cross multiply
{{{highlight(x=10)}}}
.
f{{{highlight(y=3)}}}
{{{3=(1/2)x-3}}}
{{{3+3=(1/2)x}}}----->{{{6=(1/2)x}}}, cross multiply
{{{highlight(x=12)}}}
.
f{{{highlight(y=4)}}};
{{{4=(1/2)x-3}}}
{{{4+3=(1/2)x}}}----->{{{7=(1/2)x}}}, cross multiply
{{{highlight(x=14)}}}
Let's plot the points generated (6,0);(8,1);(10,2);(12,3); & (14,4)
{{{drawing(300,300,-6,16,-6,6,grid(1),graph(300,-6,16,-6,6),blue(circle(6,0,.15)),blue(circle(8,1,.15)),blue(circle(10,2,.15)),blue(circle(12,3,.15)),blue(circle(14,4,.15)),blue(circle(6,0,.20)),blue(circle(8,1,.20)),blue(circle(10,2,.20)),blue(circle(12,3,.20)),blue(circle(14,4,.20)))}}}------>{{{drawing(300,300,-6,16,-6,6,grid(1),graph(300,300,-6,16,-6,6,(1/2)x-3),blue(circle(6,0,.15)),blue(circle(8,1,.15)),blue(circle(10,2,.15)),blue(circle(12,3,.15)),blue(circle(14,4,.15)),blue(circle(6,0,.20)),blue(circle(8,1,.20)),blue(circle(10,2,.20)),blue(circle(12,3,.20)),blue(circle(14,4,.20)))}}}
Thank you,
Jojo</pre>