Question 175743
<pre><font size = 4 color = "indigo"><b>
f(x) = x<sup>4</sup> + x<sup>3</sup> + 2x<sup>2</sup> + 4x - 8

Factor by grouping. 
First rearrange the terms:

f(x) = x<sup>4</sup> + 2x<sup>2</sup> - 8 + x<sup>3</sup> + 4x

Factor the first three terms
Factor x out of the last two

f(x) = (x<sup>2</sup> + 4)(x<sup>2</sup> - 2) + x(x<sup>2</sup> + 4)

Factor out {x<sup>2</sup> + 4)

f(x) = (x<sup>2</sup> + 4)[(x<sup>2</sup> - 2) + x]

Remove parentheses inside bracket

f(x) = (x<sup>2</sup> + 4)[x<sup>2</sup> - 2 + x]

Rearrange the terms in the bracket,
and change the bracket to parentheses:

f(x) = (x<sup>2</sup> + 4)(x<sup>2</sup> + x - 2)

Factor the second parentheses:

f(x) = (x<sup>2</sup> + 4)(x + 2)(x - 1)

Now we set that = 0

(x<sup>2</sup> + 4)(x + 2)(x - 1) = 0

Using the zero factor principle:

x<sup>2</sup> + 4 = 0        x + 2 =  0         x - 1 = 0
    x<sup>2</sup> = -4           x = -2             x = 1
     x = ±2i

The solutions are 2i, -2i, -2, and 1

Edwin</pre>