Question 174838
{{{(48a^3+32a^2+16a)/(4a)}}} Start with the given expression.



{{{(16a(3a^2+2a+1))/(4a)}}} Factor out the GCF {{{16a}}} from the numerator



{{{(4*4a(3a^2+2a+1))/(4a)}}} Factor 16 into {{{4*4}}}



{{{(4*highlight(4a)(3a^2+2a+1))/(highlight(4a))}}} Highlight the common terms. 



{{{(4*cross(4a)(3a^2+2a+1))/(cross(4a))}}} Cancel out the common terms.  



{{{4(3a^2+2a+1)}}} Simplify



{{{12a^2+8a+4}}} Distribute



So {{{(48a^3+32a^2+16a)/(4a)}}} simplifies to {{{12a^2+8a+4}}}



In other words, {{{(48a^3+32a^2+16a)/(4a)=12a^2+8a+4}}} where {{{a<>0}}}