Question 174621
if one root of a function is 1/2 - 2i, what is the equation of this function?
-----------------
If the coefficients are Real Numbers then 1/2 + 2i must be a root.
------------------------
EQUATION:
(x - (1/2 - 2i)(x - (1/2 + 2i)) = 0
Rearrange:

((x - 1/2) + 2i)((x - 1/2) - 2i) = 0

This is the form (a+b)(a-b) which = a^2 - b^2
-----------------------

(x-1/2)^2 - (2i)^2 = 0

x^2 -x + (1/4) - 4i^2 = 0

x^2 -x + 17/4 = 0
 
4x^2 - 4x + 17 = 0
========================
Ans: b
========================
Cheers,
Stan H.

(a) 4x^2 - 17x + 4 = 0
(b) 4x^2 - 4x + 17 = 0
(c) x^2 - x + 17 = 0
(d) 4x^2 + 4x + 17 = 0