Question 174465
<font size = 7 color = "red"><b>Edwin's <u>complete</u> solution:</font>

Simplify: {{{(x^5-y^5)/(x-y)}}}
<pre><font size = 4 color = "indigo"><b>
Most people learn the factorization of {{{x^N-y^N)}}}.

But if you forget you can divide that problem out using long division:

              x<sup>4</sup>  +  x<sup>3</sup>y  +  x<sup>2</sup>y<sup>2</sup> +  xy<sup>3</sup> + y<sup>4</sup>
      ---------------------------------------
x - y ) x<sup>5</sup> + 0x<sup>4</sup>y + 0x<sup>3</sup>y<sup>2</sup> + 0x<sup>2</sup>y<sup>3</sup> + 0xy<sup>4</sup> - y<sup>5</sup>
        x<sup>5</sup> -  x<sup>4</sup>y
        ---------
              x<sup>4</sup>y + 0x<sup>3</sup>y<sup>2</sup>
              x<sup>4</sup>y -  x<sup>3</sup>y<sup>2</sup>
              -----------
                     x<sup>3</sup>y<sup>2</sup> + 0x<sup>2</sup>y<sup>3</sup>
                     x<sup>3</sup>y<sup>2</sup> -  x<sup>2</sup>y<sup>3</sup>
                     ------------
                             x<sup>2</sup>y<sup>3</sup> + 0xy<sup>4</sup>
                             x<sup>2</sup>y<sup>3</sup> -  xy<sup>4</sup>
                             -----------
                                     xy<sup>4</sup> - y<sup>5</sup>
                                     xy<sup>4</sup> - y<sup>5</sup>
                                     --------
                                            0

So the answer is 

x<sup>4</sup>  +  x<sup>3</sup>y  +  x<sup>2</sup>y<sup>2</sup> +  xy<sup>3</sup> + y<sup>4</sup>


However if you memorize how to factor {{{x^N - y^N}}}, i.e.,

{{{matrix(1,14,

x^N - y^N, "=", (x - y),"(", x^(N-1)y, "+", x^(N-2)y^2, "+ ... +", x^2y^(N-2),"+",xy^(N-1),"+",y^N,")" )}}}

then you will know how to factor {{{x^5-y^5}}}. Then to simplify
the expression

{{{(x^5-y^5)/(x-y)}}}

you will just factor the numerator according to the rule above:

{{{((x-y)(x^4+x^3y+x^2y^2+xy^3+y^4))/(x-y)}}}

{{{((cross(x-y))(x^4+x^3y+x^2y^2+xy^3+y^4))/(cross(x-y))}}}

{{{x^4+x^3y+x^2y^2+xy^3+y^4)}}}.

One thing to remember though, is that although that factorization
method holds for all values of N, it only factors COMPLETELY when
N is an ODD positive integer.  When N is EVEN, you should always 
begin by factoring it as the difference of two squares.  

Edwin</pre>