Question 173654
No that's not correct.
Let's expand what you got.
{{{8(2x^4 - 5x^2) + 1=16x^4 - 20x^2 + 1}}}
Let's try this.
Use a substitution to knock down the degree of the polynomial and hopefully make it look more familiar.
Let {{{u=x^2}}}
Now substitute this into your equation.
{{{16x^4 - 40x^2 + 9 =16(u^2) - 40u + 9 }}}
{{{16x^4 - 40x^2 + 9 =16u^2 - 40u + 9 }}}
Now you have a quadratic equation in u and you can look to factor the right hand side,
{{{16x^4 - 40x^2 + 9=(4u-9)(4u-1)}}}
{{{16x^4 - 40x^2 + 9=(4x^2-9)(4x^2-1)}}}
You can further factor the right hand sides,
{{{4x^2-9=(2x-3)(2x+3)}}}
{{{4x^2-1=(2x-1)(2x+1)}}}
.
.
.
{{{16x^4 - 40x^2 + 9=(4x^2-9)(4x^2-1)}}}
{{{16x^4 - 40x^2 + 9=(2x-1)(2x+1)(2x+3)(2x-3)}}}