Question 173380
# 1





Looking at the expression {{{x^2-5x+24}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-5}}}, and the last term is {{{24}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{24}}} to get {{{(1)(24)=24}}}.



Now the question is: what two whole numbers multiply to {{{24}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{24}}} (the previous product).



Factors of {{{24}}}:

1,2,3,4,6,8,12,24

-1,-2,-3,-4,-6,-8,-12,-24



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{24}}}.

1*24
2*12
3*8
4*6
(-1)*(-24)
(-2)*(-12)
(-3)*(-8)
(-4)*(-6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>1+24=25</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>2+12=14</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>3+8=11</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>4+6=10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-1+(-24)=-25</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-2+(-12)=-14</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-3+(-8)=-11</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-4+(-6)=-10</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{-5}}}. So {{{x^2-5x+24}}} cannot be factored.




<hr>



# 2





Looking at the expression {{{x^2+3x-40}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{3}}}, and the last term is {{{-40}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-40}}} to get {{{(1)(-40)=-40}}}.



Now the question is: what two whole numbers multiply to {{{-40}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-40}}} (the previous product).



Factors of {{{-40}}}:

1,2,4,5,8,10,20,40

-1,-2,-4,-5,-8,-10,-20,-40



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-40}}}.

1*(-40)
2*(-20)
4*(-10)
5*(-8)
(-1)*(40)
(-2)*(20)
(-4)*(10)
(-5)*(8)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>1+(-40)=-39</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>2+(-20)=-18</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>4+(-10)=-6</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>5+(-8)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-1+40=39</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-2+20=18</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-4+10=6</font></td></tr><tr><td  align="center"><font color=red>-5</font></td><td  align="center"><font color=red>8</font></td><td  align="center"><font color=red>-5+8=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-5}}} and {{{8}}} add to {{{3}}} (the middle coefficient).



So the two numbers {{{-5}}} and {{{8}}} both multiply to {{{-40}}} <font size=4><b>and</b></font> add to {{{3}}}



Now replace the middle term {{{3x}}} with {{{-5x+8x}}}. Remember, {{{-5}}} and {{{8}}} add to {{{3}}}. So this shows us that {{{-5x+8x=3x}}}.



{{{x^2+highlight(-5x+8x)-40}}} Replace the second term {{{3x}}} with {{{-5x+8x}}}.



{{{(x^2-5x)+(8x-40)}}} Group the terms into two pairs.



{{{x(x-5)+(8x-40)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-5)+8(x-5)}}} Factor out {{{8}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+8)(x-5)}}} Combine like terms. Or factor out the common term {{{x-5}}}


---------------------------------------------



Answer:



So {{{x^2+3x-40}}} factors to {{{(x+8)(x-5)}}}.



Note: you can check the answer by FOILing {{{(x+8)(x-5)}}} to get {{{x^2+3x-40}}} or by graphing the original expression and the answer (the two graphs should be identical).




<hr>



# 3





{{{x^2-9/16}}} Start with the given expression.



{{{(x)^2-9/16}}} Rewrite {{{x^2}}} as {{{(x)^2}}}.



{{{(x)^2-(3/4)^2}}} Rewrite {{{9/16}}} as {{{(3/4)^2}}}.



Notice how we have a difference of squares {{{A^2-B^2}}} where in this case {{{A=x}}} and {{{B=3/4}}}.



So let's use the difference of squares formula {{{A^2-B^2=(A+B)(A-B)}}} to factor the expression:



{{{A^2-B^2=(A+B)(A-B)}}} Start with the difference of squares formula.



{{{(x)^2-(3/4)^2=(x+3/4)(x-3/4)}}} Plug in {{{A=x}}} and {{{B=3/4}}}.



So this shows us that {{{x^2-9/16}}} factors to {{{(x+3/4)(x-3/4)}}}.



In other words {{{x^2-9/16=(x+3/4)(x-3/4)}}}.