Question 173302


{{{(3h-5)(3h+5)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3h)-5)(highlight(3h)+5)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*h)*(3*h)=9*h^2}}}.



{{{(highlight(3h)-5)(3h+highlight(5))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*h)*(5)=15*h}}}.



{{{(3h+highlight(-5))(highlight(3h)+5)}}} Multiply the <font color="red">I</font>nner terms:{{{(-5)*(3*h)=-15*h}}}.



{{{(3h+highlight(-5))(3h+highlight(5))}}} Multiply the <font color="red">L</font>ast terms:{{{(-5)*(5)=-25}}}.



---------------------------------------------------



{{{9*h^2+15*h-15*h-25}}} Now collect every term to make a single expression.



{{{9*h^2-25}}} Now combine like terms.



So {{{(3h-5)(3h+5)}}} FOILs to {{{9*h^2-25}}}.



In other words, {{{(3h-5)(3h+5)=9*h^2-25}}}.