Question 173111
# 1



{{{x^2-15wy+3xy-5wx}}} Start with the given expression



{{{(x^2+3xy)+(-5wx-15wy)}}} Rearrange and group like terms.



{{{x(x+3y)+(-5wx-15wy)}}} Factor the GCF "x" from the first group



{{{x(x+3y)-5w(x+3y)}}} Factor the GCF -5w from the second group



Since we have the common term {{{x+3y}}} we can combine like terms.



{{{(x-5w)(x+3y)}}} Combine like terms.



So {{{x^2-15wy+3xy-5wx}}} factors to {{{(x-5w)(x+3y)}}}




<hr>



# 2





Looking at the expression {{{9x^2+2x-8}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{2}}}, and the last term is {{{-8}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{-8}}} to get {{{(9)(-8)=-72}}}.



Now the question is: what two whole numbers multiply to {{{-72}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-72}}} (the previous product).



Factors of {{{-72}}}:

1,2,3,4,6,8,9,12,18,24,36,72

-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-72}}}.

1*(-72)
2*(-36)
3*(-24)
4*(-18)
6*(-12)
8*(-9)
(-1)*(72)
(-2)*(36)
(-3)*(24)
(-4)*(18)
(-6)*(12)
(-8)*(9)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>1+(-72)=-71</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>2+(-36)=-34</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>3+(-24)=-21</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>4+(-18)=-14</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>6+(-12)=-6</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>8+(-9)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>-1+72=71</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>-2+36=34</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-3+24=21</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-4+18=14</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-6+12=6</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-8+9=1</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{2}}}. So {{{9x^2+2x-8}}} cannot be factored.




<hr>



# 3





{{{24x^2-10x-4}}} Start with the given expression



{{{2(12x^2-5x-2)}}} Factor out the GCF {{{2}}}



Now let's focus on the inner expression {{{12x^2-5x-2}}}





------------------------------------------------------------




Looking at the expression {{{12x^2-5x-2}}}, we can see that the first coefficient is {{{12}}}, the second coefficient is {{{-5}}}, and the last term is {{{-2}}}.



Now multiply the first coefficient {{{12}}} by the last term {{{-2}}} to get {{{(12)(-2)=-24}}}.



Now the question is: what two whole numbers multiply to {{{-24}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-24}}} (the previous product).



Factors of {{{-24}}}:

1,2,3,4,6,8,12,24

-1,-2,-3,-4,-6,-8,-12,-24



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-24}}}.

1*(-24)
2*(-12)
3*(-8)
4*(-6)
(-1)*(24)
(-2)*(12)
(-3)*(8)
(-4)*(6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>1+(-24)=-23</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>2+(-12)=-10</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>3+(-8)=-5</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>4+(-6)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-1+24=23</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-2+12=10</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-3+8=5</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-4+6=2</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-8}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-8}}} both multiply to {{{-24}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5x}}} with {{{3x-8x}}}. Remember, {{{3}}} and {{{-8}}} add to {{{-5}}}. So this shows us that {{{3x-8x=-5x}}}.



{{{12x^2+highlight(3x-8x)-2}}} Replace the second term {{{-5x}}} with {{{3x-8x}}}.



{{{(12x^2+3x)+(-8x-2)}}} Group the terms into two pairs.



{{{3x(4x+1)+(-8x-2)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(4x+1)-2(4x+1)}}} Factor out {{{2}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x-2)(4x+1)}}} Combine like terms. Or factor out the common term {{{4x+1}}}



So {{{12x^2-5x-2}}} factors to {{{(3x-2)(4x+1)}}}.





------------------------------------------------------------





So our expression goes from {{{2(12x^2-5x-2)}}} and factors further to {{{2(3x-2)(4x+1)}}}



------------------

Answer:


So {{{24x^2-10x-4}}} factors to {{{2(3x-2)(4x+1)}}}