Question 171923
Area = Width * Length



So in this case, the area is {{{A=(4x - 3)(2x - 7)}}}



Now let's FOIL the expression {{{(4x - 3)(2x - 7)}}}



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(4x)-3)(highlight(2x)-7)}}} Multiply the <font color="red">F</font>irst terms:{{{(4*x)*(2*x)=8*x^2}}}.



{{{(highlight(4x)-3)(2x+highlight(-7))}}} Multiply the <font color="red">O</font>uter terms:{{{(4*x)*(-7)=-28*x}}}.



{{{(4x+highlight(-3))(highlight(2x)-7)}}} Multiply the <font color="red">I</font>nner terms:{{{(-3)*(2*x)=-6*x}}}.



{{{(4x+highlight(-3))(2x+highlight(-7))}}} Multiply the <font color="red">L</font>ast terms:{{{(-3)*(-7)=21}}}.



---------------------------------------------------



{{{8*x^2-28*x-6*x+21}}} Now collect every term to make a single expression.



{{{8*x^2-34*x+21}}} Now combine like terms.



So {{{(4x-3)(2x-7)}}} FOILs to {{{8*x^2-34*x+21}}}.



In other words, {{{(4x-3)(2x-7)=8*x^2-34*x+21}}}.



So the area is {{{A=8x^2-34x+21}}} square feet.