Question 171724


{{{(7x^3+3)(6x^5-2)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(7x^3)+3)(highlight(6x^5)-2)}}} Multiply the <font color="red">F</font>irst terms:{{{(7*x^3)*(6*x^5)=42*x^8}}}.



{{{(highlight(7x^3)+3)(6x^5+highlight(-2))}}} Multiply the <font color="red">O</font>uter terms:{{{(7*x^3)*(-2)=-14*x^3}}}.



{{{(7x^3+highlight(3))(highlight(6x^5)-2)}}} Multiply the <font color="red">I</font>nner terms:{{{(3)*(6*x^5)=18*x^5}}}.



{{{(7x^3+highlight(3))(6x^5+highlight(-2))}}} Multiply the <font color="red">L</font>ast terms:{{{(3)*(-2)=-6}}}.



---------------------------------------------------



{{{42*x^8-14*x^3+18*x^5-6}}} Now collect every term to make a single expression.



So {{{(7x^3+3)(6x^5-2)}}} FOILs to {{{42*x^8-14*x^3+18*x^5-6}}}.



In other words, {{{(7x^3+3)(6x^5-2)=42*x^8-14*x^3+18*x^5-6}}}.