Question 171506
I'll do the first two to get you started



# 1




Looking at the expression {{{x^2+x-12}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{1}}}, and the last term is {{{-12}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-12}}} to get {{{(1)(-12)=-12}}}.



Now the question is: what two whole numbers multiply to {{{-12}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-12}}} (the previous product).



Factors of {{{-12}}}:

1,2,3,4,6,12

-1,-2,-3,-4,-6,-12



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-12}}}.

1*(-12)
2*(-6)
3*(-4)
(-1)*(12)
(-2)*(6)
(-3)*(4)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>1+(-12)=-11</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>2+(-6)=-4</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>3+(-4)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-1+12=11</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-2+6=4</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>-3+4=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{4}}} add to {{{1}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{4}}} both multiply to {{{-12}}} <font size=4><b>and</b></font> add to {{{1}}}



Now replace the middle term {{{1x}}} with {{{-3x+4x}}}. Remember, {{{-3}}} and {{{4}}} add to {{{1}}}. So this shows us that {{{-3x+4x=1x}}}.



{{{x^2+highlight(-3x+4x)-12}}} Replace the second term {{{1x}}} with {{{-3x+4x}}}.



{{{(x^2-3x)+(4x-12)}}} Group the terms into two pairs.



{{{x(x-3)+(4x-12)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-3)+4(x-3)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+4)(x-3)}}} Combine like terms. Or factor out the common term {{{x-3}}}


---------------------------------------------



Answer:



So {{{x^2+x-12}}} factors to {{{(x+4)(x-3)}}}.



Note: you can check the answer by FOILing {{{(x+4)(x-3)}}} to get {{{x^2+x-12}}} or by graphing the original expression and the answer (the two graphs should be identical).




<hr>



# 2





Looking at the expression {{{9x^2-24x+6}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{-24}}}, and the last term is {{{6}}}.



Now multiply the first coefficient {{{9}}} by the last term {{{6}}} to get {{{(9)(6)=54}}}.



Now the question is: what two whole numbers multiply to {{{54}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-24}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{54}}} (the previous product).



Factors of {{{54}}}:

1,2,3,6,9,18,27,54

-1,-2,-3,-6,-9,-18,-27,-54



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{54}}}.

1*54
2*27
3*18
6*9
(-1)*(-54)
(-2)*(-27)
(-3)*(-18)
(-6)*(-9)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-24}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>1+54=55</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>2+27=29</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>3+18=21</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>6+9=15</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-1+(-54)=-55</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-2+(-27)=-29</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-3+(-18)=-21</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-6+(-9)=-15</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{-24}}}. 



So {{{9x^2-24x+6}}} cannot be factored. This means that the polynomial is prime.