Question 170429
I'll do the first two to get you started



# 1





{{{(2a-1)^2}}} Start with the given expression.



{{{(2a-1)(2a-1)}}} Expand. Remember something like {{{x^2=x*x}}}.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(2a)-1)(highlight(2a)-1)}}} Multiply the <font color="red">F</font>irst terms:{{{(2*a)*(2*a)=4*a^2}}}.



{{{(highlight(2a)-1)(2a+highlight(-1))}}} Multiply the <font color="red">O</font>uter terms:{{{(2*a)*(-1)=-2*a}}}.



{{{(2a+highlight(-1))(highlight(2a)-1)}}} Multiply the <font color="red">I</font>nner terms:{{{(-1)*(2*a)=-2*a}}}.



{{{(2a+highlight(-1))(2a+highlight(-1))}}} Multiply the <font color="red">L</font>ast terms:{{{(-1)*(-1)=1}}}.



---------------------------------------------------



{{{4*a^2-2*a-2*a+1}}} Now collect every term to make a single expression.



{{{4*a^2-4*a+1}}} Now combine like terms.



So {{{(2a-1)^2}}} FOILs to {{{4*a^2-4*a+1}}}.



In other words, {{{(2a-1)^2=4a^2-4a+1}}}.




<hr>


# 2





{{{(x+11)(x-4)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(x)+11)(highlight(x)-4)}}} Multiply the <font color="red">F</font>irst terms:{{{(x)*(x)=x^2}}}.



{{{(highlight(x)+11)(x+highlight(-4))}}} Multiply the <font color="red">O</font>uter terms:{{{(x)*(-4)=-4*x}}}.



{{{(x+highlight(11))(highlight(x)-4)}}} Multiply the <font color="red">I</font>nner terms:{{{(11)*(x)=11*x}}}.



{{{(x+highlight(11))(x+highlight(-4))}}} Multiply the <font color="red">L</font>ast terms:{{{(11)*(-4)=-44}}}.



---------------------------------------------------



{{{x^2-4*x+11*x-44}}} Now collect every term to make a single expression.



{{{x^2+7*x-44}}} Now combine like terms.



So {{{(x+11)(x-4)}}} FOILs to {{{x^2+7*x-44}}}.



In other words, {{{(x+11)(x-4)=x^2+7*x-44}}}.