Question 169795


{{{(x^2+x-2)/(x^2-1)}}} Start with the given expression.



{{{((x+2)(x-1))/(x^2-1)}}} Factor {{{x^2+x-2}}} to get {{{(x+2)(x-1)}}}.



{{{((x+2)(x-1))/((x-1)(x+1))}}} Factor {{{x^2-1}}} to get {{{(x-1)(x+1)}}}.



{{{((x+2)highlight((x-1)))/(highlight((x-1))(x+1))}}} Highlight the common terms. 



{{{((x+2)cross((x-1)))/(cross((x-1))(x+1))}}} Cancel out the common terms. 



{{{(x+2)/(x+1)}}} Simplify. 



So {{{(x^2+x-2)/(x^2-1)}}} simplifies to {{{(x+2)/(x+1)}}}.



In other words, {{{(x^2+x-2)/(x^2-1)=(x+2)/(x+1)}}} where {{{x<>-1}}} or {{{x<>1}}}