Question 169026


Looking at the expression {{{b^2+3b+18}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{3}}}, and the last term is {{{18}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{18}}} to get {{{(1)(18)=18}}}.



Now the question is: what two whole numbers multiply to {{{18}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{18}}} (the previous product).



Factors of {{{18}}}:

1,2,3,6,9,18

-1,-2,-3,-6,-9,-18



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{18}}}.

1*18
2*9
3*6
(-1)*(-18)
(-2)*(-9)
(-3)*(-6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>1+18=19</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>2+9=11</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>3+6=9</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-1+(-18)=-19</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-2+(-9)=-11</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-3+(-6)=-9</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{3}}}. So {{{b^2+3b+18}}} cannot be factored.



So {{{b^2+3b+18}}} is prime.