Question 168713


{{{9x^2-36y^2}}} Start with the given expression



{{{9(x^2-4y^2)}}} Factor out the GCF {{{9}}}



Now let's focus on the inner expression {{{x^2-4y^2}}}





------------------------------------------------------------


{{{x^2-4y^2}}} Start with the inner expression.



{{{(x)^2-4y^2}}} Rewrite {{{x^2}}} as {{{(x)^2}}}.



{{{(x)^2-(2y)^2}}} Rewrite {{{4y^2}}} as {{{(2y)^2}}}.



Notice how we have a difference of squares. So let's use the difference of squares formula {{{A^2-B^2=(A+B)(A-B)}}} to factor the expression:



{{{(x+2y)(x-2y)}}} Factor the expression using the difference of squares.



So {{{x^2-4y^2}}} factors to {{{(x+2y)(x-2y)}}}.


------------------------------------------------------------






Answer:

So {{{9x^2-36y^2}}} completely factors to {{{9(x+2y)(x-2y)}}}