Question 168236
Running:
{{{d[r] = r[r]*t[r]}}}
Walking:
{{{d[w] = r[w]*t[w]}}}
Given:
{{{t[r] = 1/2}}}hrs
{{{t[w] = 4/3}}}hrs
{{{r[r] = r[w] + 5}}} mi/hr
Putting this data back into the equations:
{{{d[r] = (r[w] + 5)*(1/2)}}}
{{{d[w] = r[w]*(4/3)}}}
From the problem, I know {{{d[r] = d[w]}}}, so
{{{(r[w] + 5)*(1/2) = r[w]*(4/3)}}}
multiply both sides by {{{6}}}
{{{3r[w] + 15 = 8r[w]}}}
{{{5r[w] = 15}}}
{{{r[w] = 3}}}
And, since
{{{r[r] = r[w] + 5}}}
{{{r[r] = 3 + 5}}}
{{{r[r] = 8}}}
And
{{{d[r] = r[r]*(1/2)}}}
{{{d[r] = 8*(1/2)}}}
{{{d[r] = 4}}}
{{{d[w] = r[w]*(4/3)}}}
{{{d[w] = 3*(4/3)}}}
{{{d[w] = 4}}}
This verifies that 
{{{d[r] = d[w] = 4}}}mi answer