Question 168140


Looking at the expression {{{21y^2-25y-4}}}, we can see that the first coefficient is {{{21}}}, the second coefficient is {{{-25}}}, and the last term is {{{-4}}}.



Now multiply the first coefficient {{{21}}} by the last term {{{-4}}} to get {{{(21)(-4)=-84}}}.



Now the question is: what two whole numbers multiply to {{{-84}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-25}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-84}}} (the previous product).



Factors of {{{-84}}}:

1,2,3,4,6,7,12,14,21,28,42,84

-1,-2,-3,-4,-6,-7,-12,-14,-21,-28,-42,-84



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-84}}}.

1*(-84)
2*(-42)
3*(-28)
4*(-21)
6*(-14)
7*(-12)
(-1)*(84)
(-2)*(42)
(-3)*(28)
(-4)*(21)
(-6)*(14)
(-7)*(12)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-25}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>1+(-84)=-83</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>2+(-42)=-40</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-28</font></td><td  align="center"><font color=red>3+(-28)=-25</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>4+(-21)=-17</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>6+(-14)=-8</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>7+(-12)=-5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>-1+84=83</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-2+42=40</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>-3+28=25</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-4+21=17</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-6+14=8</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-7+12=5</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-28}}} add to {{{-25}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-28}}} both multiply to {{{-84}}} <font size=4><b>and</b></font> add to {{{-25}}}



Now replace the middle term {{{-25y}}} with {{{3y-28y}}}. Remember, {{{3}}} and {{{-28}}} add to {{{-25}}}. So this shows us that {{{3y-28y=-25y}}}.



{{{21y^2+highlight(3y-28y)-4}}} Replace the second term {{{-25y}}} with {{{3y-28y}}}.



{{{(21y^2+3y)+(-28y-4)}}} Group the terms into two pairs.



{{{3y(7y+1)+(-28y-4)}}} Factor out the GCF {{{3y}}} from the first group.



{{{3y(7y+1)-4(7y+1)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3y-4)(7y+1)}}} Combine like terms. Or factor out the common term {{{7y+1}}}


---------------------------------------------



Answer:



So {{{21y^2-25y-4}}} factors to {{{(3y-4)(7y+1)}}}.



Note: you can check the answer by FOILing {{{(3y-4)(7y+1)}}} to get {{{21y^2-25y-4}}} or by graphing the original expression and the answer (the two graphs should be identical).