Question 168036
We'll see shortly:
At points (-1,-4), and consider other points (0,0):
{{{Slope=(y[2]-y[1])/(x[2]-x[1])=(0-(-4))/(0-(-1))=4/1}}}
{{{Slope=4}}}, "m"
Thru points (-1,-4):
{{{y=mx+b}}}, slope intercept form
{{{-4=(-1)4+b}}}
{{{-4+4=0=b}}}, y-intercept=0:
Then, the line eqn follows: {{{y=4x}}}
{{{drawing(300,300,-5,5,-5,5,grid(1),graph(300,300,-5,5,-5,5,4x),circle(-1,-4,.20))}}}-->(y)=4x ---> points (-1,-4)
If (y)=(1/2)(x), then,
{{{drawing(300,300,-5,5,-5,5,grid(1),graph(300,300,-5,5,-5,5,(1/2)x),circle(-1,-1/2,.20))}}} --->(y)=(1/2)x ----> points (-1,-1/2), ANSWER
Thank you,
Jojo