Question 167956

{{{8b^2+24b+18}}} Start with the given expression



{{{2(4b^2+12b+9)}}} Factor out the GCF {{{2}}}



Now let's focus on the inner expression {{{4b^2+12b+9}}}





------------------------------------------------------------




Looking at the expression {{{4b^2+12b+9}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{12}}}, and the last term is {{{9}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{9}}} to get {{{(4)(9)=36}}}.



Now the question is: what two whole numbers multiply to {{{36}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{12}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{36}}} (the previous product).



Factors of {{{36}}}:

1,2,3,4,6,9,12,18,36

-1,-2,-3,-4,-6,-9,-12,-18,-36



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{36}}}.

1*36
2*18
3*12
4*9
6*6
(-1)*(-36)
(-2)*(-18)
(-3)*(-12)
(-4)*(-9)
(-6)*(-6)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{12}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>1+36=37</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>2+18=20</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>3+12=15</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>4+9=13</font></td></tr><tr><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>6+6=12</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-1+(-36)=-37</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-2+(-18)=-20</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-3+(-12)=-15</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-4+(-9)=-13</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-6+(-6)=-12</font></td></tr></table>



From the table, we can see that the two numbers {{{6}}} and {{{6}}} add to {{{12}}} (the middle coefficient).



So the two numbers {{{6}}} and {{{6}}} both multiply to {{{36}}} <font size=4><b>and</b></font> add to {{{12}}}



Now replace the middle term {{{12b}}} with {{{6b+6b}}}. Remember, {{{6}}} and {{{6}}} add to {{{12}}}. So this shows us that {{{6b+6b=12b}}}.



{{{4b^2+highlight(6b+6b)+9}}} Replace the second term {{{12b}}} with {{{6b+6b}}}.



{{{(4b^2+6b)+(6b+9)}}} Group the terms into two pairs.



{{{2b(2b+3)+(6b+9)}}} Factor out the GCF {{{2b}}} from the first group.



{{{2b(2b+3)+3(2b+3)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2b+3)(2b+3)}}} Combine like terms. Or factor out the common term {{{2b+3}}}



{{{(2b+3)^2}}} Simplify


------------------------------------------------------------



So our expression goes from {{{2(4b^2+12b+9)}}} and factors further to {{{2(2b+3)^2}}}



------------------

Answer:


So {{{8b^2+24b+18}}} completely factors to {{{2(2b+3)^2}}}