Question 167724
{{{sqrt(121x^12y^16z^6)}}} Start with the given expression



{{{sqrt(11^2x^12y^16z^6)}}} Rewrite {{{121}}} as {{{11^2}}}. 



{{{sqrt(11^2(x^6)y^16z^6)}}} Rewrite {{{x^12}}} as {{{(x^6)^2}}}. 



{{{sqrt(11^2(x^6)(y^8)^2z^6)}}} Rewrite {{{y^16}}} as {{{(y^8)^2}}}. 



{{{sqrt(11^2(x^6)^2(y^8)^2(z^3)^2)}}} Rewrite {{{z^6}}} as {{{(z^3)^2}}}. 



{{{sqrt(11^2)*sqrt((x^6)^2)*sqrt((y^8)^2)*sqrt((z^3)^2)}}} Break up the square root.



{{{11x^6y^8z^3}}} Take the square root of the squares to eliminate the squares. In other words, {{{sqrt(x^2)=x}}}



So {{{sqrt(121x^12y^16z^6)=11x^6y^8z^3}}} where every variable is positive