Question 167725


{{{4*sqrt(50)-sqrt(32)-sqrt(18)}}} Start with the given expression



{{{4*5*sqrt(2)-sqrt(32)-sqrt(18)}}} Simplify {{{sqrt(50)}}} to get {{{5*sqrt(2)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{4*5*sqrt(2)-4*sqrt(2)-sqrt(18)}}} Simplify {{{sqrt(32)}}} to get {{{4*sqrt(2)}}}.



{{{4*5*sqrt(2)-4*sqrt(2)-3*sqrt(2)}}} Simplify {{{sqrt(18)}}} to get {{{3*sqrt(2)}}}.



{{{20*sqrt(2)-4*sqrt(2)-3*sqrt(2)}}} Multiply 4 and 5 to get 20.

 


Since we have the common term {{{sqrt(2)}}}, we can combine like terms



{{{(20-4-3)sqrt(2)}}} Combine like terms. Remember, {{{5x+3x-4x=(5+3-4)x=4x}}}



{{{13*sqrt(2)}}} Now simplify {{{20-4-3}}} to get {{{13}}}



So {{{4*sqrt(50)-sqrt(32)-sqrt(18)}}} simplifies to {{{13*sqrt(2)}}}. 



In other words,  {{{4*sqrt(50)-sqrt(32)-sqrt(18)=13*sqrt(2)}}}