Question 167710
{{{(3y^3m^(-5))^5=((3y^3)/(m^5))^5=((3y^3)^5)/((m^5)^5)=(3^5y^(3*5))/(m^(5*5))=(243y^15)/(m^25)}}}



So {{{(3y^3m^(-5))^5=(243y^15)/(m^25)}}}



Notes:


1) {{{m<>0}}} (otherwise a division by zero would occur)



2) {{{m^(-5)=1/(m^5)}}}



3) {{{3=3^1}}}



3) Since {{{(x^y)^z=x^(y*z)}}}, this means that {{{(3y^3)^5=(3^1y^3)^5=3^(1*5)y^(3*5)=3^5y^15=243y^15}}}