Question 167670


Looking at the expression {{{12x^2+32x+21}}}, we can see that the first coefficient is {{{12}}}, the second coefficient is {{{32}}}, and the last term is {{{21}}}.



Now multiply the first coefficient {{{12}}} by the last term {{{21}}} to get {{{(12)(21)=252}}}.



Now the question is: what two whole numbers multiply to {{{252}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{32}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{252}}} (the previous product).



Factors of {{{252}}}:

1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252

-1,-2,-3,-4,-6,-7,-9,-12,-14,-18,-21,-28,-36,-42,-63,-84,-126,-252



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{252}}}.

1*252
2*126
3*84
4*63
6*42
7*36
9*28
12*21
14*18
(-1)*(-252)
(-2)*(-126)
(-3)*(-84)
(-4)*(-63)
(-6)*(-42)
(-7)*(-36)
(-9)*(-28)
(-12)*(-21)
(-14)*(-18)


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{32}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>252</font></td><td  align="center"><font color=black>1+252=253</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>126</font></td><td  align="center"><font color=black>2+126=128</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>3+84=87</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>4+63=67</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>6+42=48</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>7+36=43</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>9+28=37</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>12+21=33</font></td></tr><tr><td  align="center"><font color=red>14</font></td><td  align="center"><font color=red>18</font></td><td  align="center"><font color=red>14+18=32</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-252</font></td><td  align="center"><font color=black>-1+(-252)=-253</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-126</font></td><td  align="center"><font color=black>-2+(-126)=-128</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>-3+(-84)=-87</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>-4+(-63)=-67</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>-6+(-42)=-48</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-7+(-36)=-43</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-9+(-28)=-37</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-12+(-21)=-33</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-14+(-18)=-32</font></td></tr></table>



From the table, we can see that the two numbers {{{14}}} and {{{18}}} add to {{{32}}} (the middle coefficient).



So the two numbers {{{14}}} and {{{18}}} both multiply to {{{252}}} <font size=4><b>and</b></font> add to {{{32}}}



Now replace the middle term {{{32x}}} with {{{14x+18x}}}. Remember, {{{14}}} and {{{18}}} add to {{{32}}}. So this shows us that {{{14x+18x=32x}}}.



{{{12x^2+highlight(14x+18x)+21}}} Replace the second term {{{32x}}} with {{{14x+18x}}}.



{{{(12x^2+14x)+(18x+21)}}} Group the terms into two pairs.



{{{2x(6x+7)+(18x+21)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(6x+7)+3(6x+7)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+3)(6x+7)}}} Combine like terms. Or factor out the common term {{{6x+7}}}


---------------------------------------------



Answer:



So {{{12x^2+32x+21}}} factors to {{{(2x+3)(6x+7)}}}.



Note: you can check the answer by FOILing {{{(2x+3)(6x+7)}}} to get {{{12x^2+32x+21}}} or by graphing the original expression and the answer (the two graphs should be identical).