Question 166212
{{{AX=B}}}
{{{X=A^(-1)B}}}
Find the inverse of A.

{{{A=(matrix(3,3,
2 ,0 ,0
,-1, 2, 0,
-2, 4, 1  ))}}}
{{{A^(-1)=(1/4)*(matrix(3,3,
2 ,0 ,0
,1, 2, 0,
0, -8,4  ))}}}


Multiply rows of the inverse matrix by the column matrix to get the product. 

{{{X[1]= (1/4)*(2(4)+0(10)+0(11))=2}}}
{{{X[2]= (1/4)*(1(4)+2(10)+0(11))=6}}}
{{{X[3]= (1/4)*(0(4)+(-8)(10)+4(11))=-9}}}
.
.
.
{{{(matrix(3,3,
2 ,0 ,0
,-1, 2, 0,
-2, 4, 1  ))*(matrix(3,1, 
2,6,-9 ))=(matrix(3,1, 
4,10,11 ))}}}
.
.
.
b.)
{{{X=(matrix(3,1, 
2,6,-9 ))}}}