Question 165531
</pre><font size=4><b>
Remember: Finding the Slope: {{{m=(y[2]-y[1])/(x[2]-x[1])}}}
Given points: (3,0)(-1,-5)
Continuing,
{{{m=(-5-0)/(-1-3)=-5/-4}}}
{{{highlight(m=5/4)}}}, SLOPE
Next, we need to find the intercepts of the line with slope {{{m=5/4}}}:
{{{y=mx+b}}}, SLOPE INTERCEPT FORM
Thru points (3,0):
{{{0=(5/4)3+b}}}
{{{b=-(5/4)3=-15/4}}}
Thru points (-1,-5):
{{{-5=(5/4)(-1)+b}}}
{{{b=-5+(5/4)=(-20+5)/4=-15/4}}}, same y-intercept
Then,
f(x)=0: thru SLOPE INTERCEPT FORM EQN, either points (3,0) or (-1,-5),
{{{y=(5/4)(0)-15/4}}}
{{{highlight(y=-15/4)}}}
f(y)=0:
{{{0=(5/4)x-15/4}}}
{{{cross(5/4)(x)/cross(5/4)=(15/4)/(5/4)=(15/4)(4/5)=60/20}}}
{{{highlight(x=3)}}}
See graph below:
{{{drawing(300,300,-5,5,-5,5,grid(1),graph(300,300,-5,5,-5,5,(5/4)x-(15/4),(5/4)(x)-(15/4)),circle(3,0,.20),circle(0,-15/4,.20))}}}--- thru {{{slope=5/4}}},the line passes thru x & y intercepts (3,-15/4)
Thank you,
Jojo</pre>