Question 165019
</pre><font size=4><b>
I dont know how you got your answer, but try this one:
Use compound interest formula --> {{{A=P(1+(i/m))^(mn)}}}
where,
{{{P=initial_investment=25400}}}
{{{A=Future_amount=50800}}}, wants twice the initial invest. right?
{{{i=interest}}}
{{{n=years}}}
{{{m=number_of_times_compunded}}}
Continuing,
{{{50800=25400(1+(0.065/4))^(4n)}}}
{{{50800=25400(1+0.01625)^(4n)}}}
{{{50800/25400=(1.01625)^(4n)}}}
{{{2=(1.01625)^(4n)}}}
{{{log2=(4n)log1.01625}}}
{{{log2/log1.01625=4n}}}
{{{43=4n}}} -----> {{{cross(43)10.75/cross(4)=cross(4)n/cross(4)}}}
{{{n=10.75years}}} ---> 10years & 9 months, ANSWER
Let's check, using our formula,
{{{A=P(1+(i/m))^(mn)}}}
{{{50800=25400(1+(0.065/4))^(4*10.75)}}}
{{{50800=25400(1+0.01625)^(43)}}}
{{{50800=25400(1.01625)^(43)}}}
{{{50800=25400(2)}}}
{{{50800=50800}}}
Thank you,
Jojo</pre>