Question 163870
The length is 3 yards greater than the width.
{{{L=3+W}}}
The area of a rectangle is 
{{{A=L*W=270}}}
{{{(3+W)W=270}}}
{{{W^2+3W=270}}}
{{{W^2+3W-270=0}}}
Use the quadratic formula,
{{{W = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
{{{W = (-3 +- sqrt( 3^2-4*1*(-270) ))/(2*1) }}}
{{{W = (-3 +- sqrt( 9+1080 ))/(2) }}}
{{{W = (-3 +- sqrt(1089 ))/(2) }}}
{{{W = (-3 +- 33)/(2) }}}
{{{W[1]=(-3+33)/2=30/2=15}}}
{{{W[2]=(-3-33)/2=-36/2=-18}}}
.
.
.
A negative width doesn't make sense for our problem, so we'll only use the positive solution.
.
.
.
From above,
{{{L=3+W}}}
{{{L=3+15}}}
{{{L=18}}}
The lot is 15 yards wide, 18 yards long.