Question 163832
Let's call the number of nasturtium seed packets, N, and the number of Johnny-jumpup seed packets, J. 
The total number of packets is 16.
1.{{{N+J=16}}}
The total cost equation is
{{{0.95*N+1.43*J=1.10(N+J)}}}
{{{0.95*N+1.43*J=1.10(16)}}}
2.{{{0.95*N+1.43*J=17.60}}}
Use eq. 1 to get an expression for N in terms of J.
1.{{{N+J=16}}}
{{{N=16-J}}}
Now substitute that expression into eq. 2 and solve for J,
2.{{{0.95*N+1.43*J=17.60}}}
{{{0.95*(16-J)+1.43*J=17.60}}}
{{{15.20-0.95J+1.43*J=17.60}}}
{{{15.20+0.48*J=17.60}}}
{{{0.48*J=2.40}}}
{{{J=5}}}
Then from eq. 1,
{{{N=16-J}}}
{{{N=16-5}}}
{{{N=11}}}
.
.
.
11 nasturtium seed packets and 5 Johnny-jumpup seed packets make up the 16 packet set.